
©The Society of Exploration Geophysicists and the Chinese Geophysical Society 

GEM 2019 Xi’an: International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications 

Xi’an, China. May 19-22, 2019 
*The corresponding author: geo.aline@gmail.com.  

Geology differentiation of geophysical inversions using machine learning   
Aline Tavares Melo*1,2 and Yaoguo Li2 
1Departamento de Geologia, Universidade Federal de Minas Gerais, Brazil 
2Department of Geophysics, Colorado School of Mines, United States 
 

Summary 

 

Multiple geophysical methods are often employed to 

improve subsurface understanding, especially in areas with 

little a priori geological information. Therefore, quantitative 

methods for integrating multiple physical property models 

are fundamental to taking the interpretation further into 

geology diff erentiation of distinct units. Hence, applications 

of machine learning are growing in geosciences due to its 

potential to integrate various sources of information. We 

evaluate the performance of density-, distribution-,  

centroid-, and correlation-based clustering methods in the 

identification of the three geologic units in density, 

susceptibility and conductivity models derived from a 

synthetic model, and show that correlation-based clustering 

gives the best results for  geology diff erentiation. We apply 

the method to physical property models recovered from field 

data over a copper deposit and the results show a good spatial 

correspondence with the known geology from drilling 

information, allowing the construction of a quasi-geology 

model. 

 

Introduction 

 

Different geophysical methods probe subsurface geology 

through different physical phenomena and they collectively 

provide improved understanding of subsurface. Therefore, 

effective quantitative methods for integrating multiple 

inverted physical property models are necessary to extract 

the maximum amount of information and advance the 

interpretation further into differentiation of geologic units. 

Geology differentiation is the process of identifying 

associations between geophysical units and different 

geological units to improve interpretation. To accomplish 

this, machine learning (ML) provides an effective and 

important means due to its potential to improve 

interpretation of information from multiple sources of data. 

However, different from other fields where machine learning 

is already being used as a tool to make interpretations more 

accurate and consistent with all data, such approaches are 

still in the initial stages in mineral exploration. In brownfield 

exploration, supervised machine learning has been applied 

to train algorithms for the identification of new targets. 

Unfortunately, the lack of training data for greenfield 

exploration primarily allows the application of unsupervised 

machine learning at present, which has the ability of 

exploring hidden structures in the data. Therefore, 

considering a greenfield exploration scenario, where specific 

a priori geologic information is unavailable, we investigate 

the application of unsupervised machine learning in geology 

differentiation based on independent minimally constrained 

inversions of multiple geophysical data sets.  

 

We first examine the interpretation of magnetic, gravity 

gradient, and DC resistivity data over a synthetic geologic 

model, which is inspired by the Cristalino iron oxide copper 

gold deposit, in northern Brazil, and has three main units: the 

copper ore, iron formation, and mafic volcanic host rock. 

The inverted susceptibility, density, and conductivity 

models are used for geology differentiation by applying 

unsupervised machine learning, more specifically, clustering 

algorithms. We evaluate the performance of density-, 

distribution-, centroid-, and correlation-based clustering 

methods in the identification of the three geologic units. We 

show that correlation-based clustering yields the best results 

for the geology differentiation, and the resulting integrated 

model can be interpreted using references of ore deposit 

models to form a quasi-geology model. We then apply 

correlation-based clustering to the geophysical models 

derived from inversion of field data at Cristalino deposit and 

show the strong correspondence between the quasi-geology 

model constructed through the geology differentiation 

method using machine learning presented here and the 

geology model constructed from drilling. 

 

Methodology 

 

The synthetic geology model constructed for this study 

(Figure 1) is based on Cristalino iron oxide copper gold 

(IOCG) deposit, in northern Brazil. The copper deposit is 

hosted by iron formation interbedded with volcanic rocks. 

The deposit formed by hydrothermal fluids which were 

transported through the fault that cuts the whole sequence 

and reacted with the magnetite of the iron formation. The 

process consumed magnetite and converted it to form the 

chalcopyrite of the copper ore (Huhn et al., 1999). For this 

reason, the iron formation pinches out where the deposit has 

its maximum thickness. Although the rock layers in 

Cristalino dip 50º to west, our synthetic models have vertical 

bodies for simplicity. 

 

The synthetic susceptibility, density, and conductivity 

models corresponding to the synthetic geological model 

were used to forward model magnetic, gravity gradient, and 

DC resistivity data, respectively. Without loss of generality, 

we simulate ground surveys. The magnetic and gravity 

gradient data are co-located. The data separation is 50 m in 

the east direction, 75 m in the north direction, and 1.5 m 

above ground. The Earth’s magnetic field was assumed to be 

the same as that field in the low-latitude region with field 
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strength of 25,000 nT and zero inclination and declination 

(similar to the field in northern Brazil). The DC resistivity 

data follow the flat topography and has line spacing of 100 

m in the north direction and station spacing of 25 m in the 

east direction. The survey configuration is dipole-dipole 

array with a 50-m electrode separation and 8 n-spacings. 

Uncorrelated Gaussian noise was added to the magnetic, 

gravity gradient, and resistivity data. We used the 3D 

potential field inversion algorithm developed by Li and 

Oldenburg (1996, 2003) to invert the magnetic data, Li 

(2001) for the gravity gradient data, and Li and Oldenburg 

(2000) for the DC resistivity data. The inverse solutions were 

obtained using Tikhonov regularization. The data of each 

geophysical method was inverted using the same mesh of 

cubic cells of 50x50x50m to ensure the spatial compatibility. 

 

The recovered susceptibility model (Figure 2a) shows two 

magnetic bodies that are associated with the two segments 

of the iron formation unit. The recovered density model 

(Figure 2b) also shows two main anomalies that are 

coincidental with the two segments of the iron formation. In 

addition, there is one anomaly of moderate density values 

associated with the copper ore. The recovered conductivity 

model (Figure 2c) has the main anomaly located in the 

central part of the model, which is spatially coincidental with 

the copper ore. The other anomalies of high conductivity 

over the area are related to the conductive overburden and 

are limited to the shallow layer only. 

 

Little a priori geologic information is usually available in 

greenfield exploration under cover. Therefore, the 

construction of 3D models from geophysical data is through 

minimally constrained inversions, and the resulting models 

are strongly influenced by the imposed smoothness of 

physical property values. For this reason, the change of 

physical properties between different units do not show 

sharp boundaries, but instead it is gradual and leads to 

inversion artifacts (Figure 2d). Given this common scenario 

for explorationists and the need of constructing integrated 

models for geology differentiation, we apply unsupervised 

machine learning (ML) to explore the structure contained in 

the model values and identify meaningful relations between 

physical properties to map regions of different geologic 

units. In unsupervised ML, clustering is the process of 

identifying patterns by grouping similar objects according to 

their attribute values. In our study the objects are the cells of 

the 3D models and the attributes the physical property values 

of each cell (susceptibility, density, and conductivity). The 

objective is to find the best grouping of attributes, or 

segmentation of crossplot, that corresponds to the units 

present in the geologic model. Ultimately, we are looking for 

the segmentation in the parameter domain, that corresponds 

to geological units in the space domain. 

 

The measure of similarity among objects is based on the 

similarity between the attributes of each object. In other 

words, the measure of similarity among cells of a model is 

based on the similarity between the physical properties of 

each cell. Clustering algorithms measure the similarity 

between attributes based on the distance between them in the 

 

 

 
Figure 1: Synthetic geologic model based on Cristalino deposit 

showing the geologic units and their physical property values. The 

conductivity and density values were based on Telford et al. (1990). 

The susceptibility values were based on Clark and Emerson (1991). 

a) susceptibility                            b) density 

 
c) conductivity                             d) crossplot of physical properties 

 
Figure 2: a) Inverted 3D susceptibility model, b) inverted 3D density 

model, c) inverted 3D conductivity model, and d) crossplot of the 

normalized values of density, log susceptibility and log conductivity 

of the inverted models. 
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parameter domain. Different algorithms will measure this 

distance based on different metrics. Therefore, the choice 

algorithm should be compatible with the characteristics of 

the data being segmented. In our study, density-based 

clustering (Figure 3) could not identify clusters that 

correspond to the geologic units, and perform geology 

differentiation, because their classification is based on the 

distance between groups. Therefore, these methods require 

that different groups should be separated by a gap, and this 

is not a characteristic of the physical property models, where 

the change is gradual. Another option of measure of 

similarity is the statistical distribution of the clusters, which 

is the basis for distribution-based clustering algorithms. The 

statistical distribution needs to be known a priori, otherwise 

it becomes a strong assumption for the data. Here, the 

assumption of a Gaussian distribution worked well to 

identify the volcanic host rock and iron formation of the 

synthetic model, because their recovered physical property 

distributions are close to Gaussian. On the other hand, the 

assumption of a Gaussian distribution did not work for 

identifying the copper ore unit that has a bimodal 

distribution and, as a result, the unit became very noisy.  

 

The application of centroid-based clustering also requires 

another strong assumption, because its good performance 

depends on the sphericity of clusters in the data. Therefore, 

the result will not be reliable if the clusters have linear 

distributions. In our study, the cluster corresponding to the 

copper ore only identifies its core and incorporates inversion 

artifacts. On the other hand, correlation-based clustering has 

shown the best result in mapping all three geologic units. It 

successfully finds the subspaces of maximum correlation 

between physical properties for each geologic unit and is 

minimally influenced by inversion artifacts. 

 

The confusion matrix (Figure 4), which compares each 

predicted cell of the 3D model with the known unit which 

they belong to in the synthetic model, shows that 60% of the 

copper ore cells were classified as ore, while 35% as iron 

formation. Some copper ore cells were classified as iron 

formation because the smooth magnetic inversion overlaps 

the copper ore in the interface between units, where the ore 

is thin, and the susceptibility parameter dominates in the 

classification. A total of 93% of the iron formation and 92% 

of the volcanic host rock cells were correctly predicted by 

the quasi-geology model. 

 

Cristalino Copper Deposit Example 

 

Cristalino (482 Mt @ 0.65% Cu and 0.06 g/t Au (NCL 

Brasil, 2005)) is a world class IOCG deposit located in the 

Carajás Mineral Province, a highly mineralized metallogenic 

region in Brazil. The copper deposit is hosted by a splay of 

the Carajás Fault, which is a major crustal fault. This splay 

fault cuts through a volcano-sedimentary sequence formed 

by iron formation interlayered with mafic and felsic volcanic 

rocks (Figure 5). This sequence is dipping approximately 50º 

to southwest, parallel to the fault plane that acted as a conduit 

for hydrothermal fluids (Huhn et al., 1999). 

 

The geological characterization scheme presented in this 

study used magnetic, gravity gradient, and DC resistivity 

data over the deposit. The data corresponding to each 

geophysical method were independently inverted to build 

susceptibility, density, and conductivity models in the same 

way the synthetic data in the previous section. Then, 

a) density-based                                b) distribution-based 

    
 

 c) centroid-based                            d) correlation-based 

    
Figure 3: Integrated models constructed from: a) density-based, b) 

distribution-based, c) centroid-based, and d) correlation-based 

clustering. 

 

Figure 4: Confusion matrix showing the comparison between the 

known geology from the synthetic model and the predicted units 
from the quasi-geology model obtained through correlation-based 

clustering. 
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correlation-based clustering was applied to perform geology 

differentiation in the three models (Figure 6). The clusters 

derived through this process were then used to map cells in 

the inversion models into different geologic units to build a 

quasi-geology model and achieve the desired geology 

differentiation. When applying to the well-studied Cristalino 

IOCG deposit, the results show a good spatial 

correspondence with the known geology from drilling 

information, and the method is able to identify the spatial 

location and extent of the copper ore unit. Although no prior 

information from drilling is used, the quasi-geology model 

from the unsupervised clustering analyses shows a 62% to 

64% spatial match with known 3D geological model. 

 

 

 

Conclusions 

 

In this work, we propose an objective geology differentiation 

method that supports integrated interpretation of multiple 

geophysical inversions in greenfield exploration. 

Considering the proposed method is entirely data-driven, the 

high rate of match demonstrates that such geology 

differentiation is feasible in a complex geological setting 

such as the Cristalino copper deposit, where the target is 

obscured by the more anomalous responses of an adjacent 

iron formation. This work contributes to solving practical 

challenges of greenfield mineral exploration by providing 

effective unbiased integrated interpretation methods that 

produce directly interpretable quasi-geology models. 
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Figure 5: 3D geological model of Cristalino copper deposit 

constructed from 303 drillholes (adapted from Vale S.A., 2004). 

 

Figure 6: Susceptibility, density, and conductivity models that were 

integrated using machine learning to construct the quasi-geology 
model, which is similar to the geology model constructed from 

drilling logs. 


